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Abstract—The present numerical study is directed towards Rayleigh-Bénard convection with insulated
side walls for small aspect ratio enclosures. A Boussinesq fluid is assumed. Bifurcations have been docu-
mented and the physics of the flow field have been looked into for three different aspect ratios, 3.3:1.9:1,
3.5:2.1:1and 4:2:1, and three different fluid Prandtl numbers, 0.5, 0.71 and 2.5. It was found that rolls
parallel to the long side are stable only below a Rayleigh number of 20000 for a 3.5:2.1: 1 geometry with
water (Pr = 2.5) as the fluid. For the 3.3:1.9: 1 geometry with liquid helium (Pr = 0.5) the transition from
a three-cell to a two-cell pattern is accompanied by strong time dependence. For the 4:2: 1 geometry with
air (Pr = 0.71) the transition from four to three rolls was found to be a result of the skewed varicose
instability.

INTRODUCTION

THE IMPORTANCE of Rayleigh-Bénard convection, i.e.
natural convection in the heated from below case,
is well recognized in the literature. Aside from its
relevance to some practical applications, it is inher-
ently unstable and provides a unique and useful physi-
cal situation to study the dynamics of a non-linear
system governed by partial differential equations. One
striking non-linear phenomenon of Rayleigh-Bénard
convection is the so-called pattern selection process
[1]. This refers to the observation that even for the
same set of parameters the system generates a rich
selection of different flow structures that are breath-
taking in their variety.

One typical flow pattern which has received con-
siderable attention in the past is roll convection [2].
As shown in Fig. 1, the flow consists of two-dimen-
sional cells (with the exception of wall effects) that are
roughly square in cross-section. In this paper we look
into some of the critical issues of roll convection with
the help of direct numerical simulations and, in par-
ticular, roll convection and pattern selection in small
aspect ratio enclosures (aspect ratios less than 5). We
basically address two related issues in the pattern
selection problem of rolls, otherwise known as the
wavenumber selection problem.

Firstly, early theoretical [3] and experimental
results {4] seem to suggest that convective rolls in
rectangular boxes invariably align themselves parallel
to the shorter horizontal dimension of the rectangular
enclosure. Later theoretical results [5] showed in a
definitive manner that although rolls parallel to the
short side are more likely (henceforth referred to as
short rolls), rolls parallel to the long side do exist
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(henceforth referred to as long rolls). Furthermore,
Kolodner et al. [6] did in fact observe long rolls exper-
imentally for intermediate and large Prandtl number
fluids. This paper looks into the stability of long rolls
for moderate Prandtl number fluids by direct numeri-
cal simulation.

This is an important issue. Smalil aspect ratio RB
convection with short rolls have been used in the
past [7, 8] to study the various routes to chaos and
turbulence. If stable long roll patterns can indeed be
generated this could be a useful starting point for
further investigations in the time-dependent domain.
Assuming that the flow structure retains its stability,
further insights into the transition phenomenon can
be found by perhaps uncovering some additional
routes to turbulence. On the other hand, if stable and
regular flow patterns cannot be maintained, it is of
interest to know the mechanism as well as the outcome
of the change as the Rayleigh number is increased.

The second related question is with respect to the
curious phenomenon of ‘loss of rolls’ observed exper-
imentally for intermediate and large aspect ratio boxes
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F1G. 1. Schematic diagram of Rayleigh-Bénard convection
in the form of rolls.
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Pr v/a, Prandtl number

Ra  gPATL?/va, Rayleigh number
non-dimensional time
non-dimensional temperatare

cold wall temperature [*C]

hot wall temperature [*C]

(Ty+ T¢)/2, mean temperature [°C]
non-dimensional velocity vector
non-dimensional x-direction velocity

ch T

NOMENCLATURE
A, aspect ratio in the x-direction v non-dimensional y-direction velocity
A. aspect ratio in the z-direction w non-dimensional z-direction velocity
g acceleration due to gravity jm? s '] X non-dimensional horizontal spatial
L height of the enclosure [m] coordinate
Nu  Nusselt number ¥ non-dimensional vertical spatial
V4 non-dimensional pressure coordinate

z non-dimensional spatial coordinate in
the direction of depth.

Greek symbols

o thermal diffusivity [m® s~ ']

B coefficient of volume expansion [K ']
AT  temperature difference, Ty — T [°C]

v kinematic viscosity [m?® s~ ']

0 density [kg m *].

by many [6, 9, 10]. This relates to the fact that the
wavenumber of the rolls decreases with an increase in
Rayleigh number as a consequence of discrete tran-
sitions (decrease) in the number of rolls. Busse and
Clever [11] showed theoretically that this is a conse-
quence of the skewed varicose instability for RB con-
vection without side walls. Nevertheless, the phenom-
enon is still not well understood for RB convection
with side walls. Some doubts still remain, particularly
since some of the earlier analyses [12] predicted just
the opposite, i.€. an increase of wavenumber with an
increase in Rayleigh number.

In this paper, this phenomenon has also been
looked into with the aid of numerical simulation but
is limited to small boxes. We are not aware of any
previous attempts at numerical simulations of the roll
transition phenomenon, aithough there have been
failures [13]. A numerical investigation can potentially
provide much more insight into the problem since it
is possible to take a look at the flow and temperature
field to an extent that cannot be matched exper-
imentally. A numerical investigation was therefore
undertaken keeping these things in mind.

GOVERNING EQUATIONS AND
FORMULATIONS

The geometry of the enclosure is shown in Fig. 1.
The vertical walls are all adiabatic. The bottom wall
is heated and the top wall is cooled, both isothermally.
The fluid is Boussinesq, i.e. we assume that all trans-
port properties of the fluid are constant with the
exception of the buoyancy term in the momentum
equations, which is linearized. The governing equa-
tions are non-dimensionalized by suitable scales of the
dependent and independent variables. The x, y, and z
coordinates were scaled by L, the enclosure height,
the velocities were scaled by /L, the time by L*/«, and
the equilibrium hydrostatic pressure in the absence of

a temperature gradient was scaled by pa’/L*. The
temperature was non-dimensionalized by T— T, /AT,
AT = Ty~ Te,and T, = (T, + T¢}/2, ais the thermal
diffusivity and p is the fluid density. The non-dimen-
sionalized governing equations for the Boussinesq
equations are the following [2}:

V-U=0 n
ou op 2
=Y (uU)——é;JrPrVu (2)
dv ap 2
EEWLV.(UU):w—F];jLPrV v+RaPrT (3)
ow ap 2
(}t +V- (WU) = - F +PrViw (4)
oT
f%+v%ﬂD=VWi (5)

The boundary conditions consistent with the adia-
batic and isothermal walls in a non-dimensional form
are the following:

x=0,4,; 0<z<4., 0<y<]

=0 ©
¢

r=0,4.; 0<€x<4,; 0<y<l
o7
u=p=w=0 2==0 )
y=0,1; 0sx<4,; 0<z<4,;
u=v=w=0 T=05—y. (8)

Note that the non-dimensional pressure is actually the
pressure difference between the local and the hydro-
static pressure under isothermal and quiescent
conditions.

The governing equations are solved in primitive
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variables in a uniform, three-dimensional staggered
grid based on the control volume method [14]. The
QUICK scheme is used in the finite difference for-
mulation of the convective terms to minimize numeri-
cal diffusion effects [15]. The SIMPLEX algorithm
[16] was used to solve the coupled heat transfer and
fluid flow problem which is essentially a more implicit
variant of SIMPLE. The time step was typically 0.001.

VALIDATION AND GRID REFINEMENT

For three-dimensional RB convection in a box there
is no analytical solution for even the limiting cases. It
therefore becomes necessary to compare the numeri-
cal solution with experiments. The interferometric
results of Farhadieh and Tankin [17] were used for
comparison. The details of the validation are given
elsewhere [18]. Internal checks on the accuracy and
consistencies show that the average Nusselt numbers
at the cold and hot walls, which is a test of global
energy balance, were equal to within machine pre-
cision when steady state was reached. The continuity
equation was satisfied for every contro! volume to
within machine precision as well. A detailed grid
refinement study has been reported elsewhere {19} and
will not be repeated here. The study revealed that .«
horizontal resolution of 0.1 and a vertical resolution
of 0.05 were a good compromise between accuracy
and computational expenses.

STABILITY OF LONG ROLLS

We study the stability of long rolls by numerical
simulation. The aspect ratios are taken to be 3.5 and
2.1 and the Prandtl number is set at 2.5. These par-
ameters are the same as in the experiments of Gollub
and Benson [7]. However, in their investigation the
flow field consisted of two counter-rotating rolls par-
allel to the short side. In contrast what we have here
are two counter-rotating rolls parallel to the long side.
The two are the same except that the wavenumber of
the long rolls is somewhat larger. The two-roll struc-
ture is generated with velocity perturbations (Fig. 2)
as given in Mukutmoni and Yang [18]. All com-
putations were carried out with a 30 x 20 x 30 grid,
which is consistent with the grid refinement study.

In the two-roll structure, the fluid rises along the
side walls and descends along the plane of symmetry in
between the rolls. The flow is mostly two-dimensional
except near the walls and some weakly axial flow as
mentioned in Mukutmoni and Yang [19]. The numeri-
cal investigation was carried out as follows: com-
putations were started with a Rayleigh number of
4000. Then, using the steady state velocity and tem-
perature field as an initial condition, the Rayleigh
number was increased in steps of 2000. The other
parameters, which are the aspect ratios and Prandtl
number, were of course not changed.

It was found that between Rayleigh numbers of
18 000 and 20 000 the two-roll structure changed dra-
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Fic. 2. Isotherms (a), velocity vectors (b) and sectional
streamlines (c) for Ra = 14000 at the vertical plane z = 1.44
for long rolls.

matically. The outcome of the change is a structure
that is fully three-dimensional (Fig. 3) as a result of
secondary flows parallel to the roll axis. The planform
structure can be described as four rectangular cells
each having the same aspect ratio as that of the enclos-
ure itself. Thus, unlike the rolls, the spatial periodicity
is present in both directions [20].

The computed pathlines shown in Fig. 4 give some
additional information about the flow topology. It
appears that the flow is rising along all four side walls
and descending at the center of the horizontal
planform. A perfect four-fold symmetry that was evi-
dent before the transition is still preserved and the
flow field is still time independent. As the Rayleigh
number is increased further the flow field becomes
oscillatory and also the mean flow suffers qualitative
structural changes between Rayleigh numbers of
34000 and 36 000.

As seen in Fig. 5, the mean flow can now be
described as two rectangular cells in the horizontal
planform. Thus, it now has a two-fold symmetry
about one of the vertical planes. Symmetry breaking
bifurcation is typical of RB convection [2]. The Nus-
selt numbers as a function of the Rayleigh number are
given in Fig. 6. Note that we see no discontinuity in
the Nusselt number as a result of the transition from
the roll planform to a rectangular planform. The flow
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F1G. 3. Isotherms (a) and velocity vectors (b) at the horizontal section y = 0.8 for Ra = 24000.

F1G. 4. Top perspective view of computed pathlines for Ra = 24 000.
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. 5. The mean velocity field for Ra = 36000 at the hori-
zontal section y = 0.8.

transition from an essentially two-dimensional flow
structure to a three-dimensional one is a novel
phenomenon and has not been documented for small
aspect ratio boxes and moderate Prandtl numbers,
either experimentally or numerically. However, the
phenomenon is not surprising. Kolodner et al. [6]
documented a transition from long rolls to bimodal
convection for a high Prandtl number fluid, which is
similar to the transition that one observes in this case.

Transition from long rolls to short rolls reported in
Mukutmoni and Yang [18] can be simulated between
Rayleigh numbers of 24000 and 26000. However,
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finite perturbations were required. The perturbations
generated from the calculations so far caused by
machine round-off errors are practically infinitesimal.
For finite perturbations, the Rayleigh number of the
fluid was increased abruptly to a very high value and
then brought back to the same state. Physically, this
means that the fluid has been suddenly heated and
then cooled. This ‘quenching’ operation has been used
by Giglio et al. [21] in their experiments. Note that if
this approach is not used, the rectangular cell pattern
was found to be quite stable and no transition
occurred. Therefore, it can be said that the rectangular
cell pattern is metastable, i.e. it is stable to infinitesimal
perturbations but not finite ones.
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The Nusselt number as a function of the Rayleigh
number, which shows the forced transition from long
to short rolls, is depicted in Fig. 6. Note that after
transition there is a drop in the Nusselt number. This
is to be expected, since the wavenumber after the
transition has decreased. For the purpose of com-
parison, the Nusselt number variation for the short
rolls is also shown. The flow field after transition
is indistinguishable from a short roll pattern. If the
vertical side walls are assumed to be stress-free, the
same qualitative behavior is observed, except that the
two transitions occur at lower Rayleigh numbers.
Also, the Nusselt numbers for the same Rayleigh num-
ber are higher (Fig. 6).

It is known that the Prandtl number of the fluid
significantly affects the transition phenomena. For
that reason we now study the stability of roll con-
vection for liquid helium, which has a much lower
Prandtl number of 0.5. However, we restrict ourselves
to short rolls for which experiments have been per-
formed, most notably by Libchaber and co-workers.

(b)

D. MukutMont and K. T. YANG

TRANSITIONS IN LIQUID HELIUM

One of the relevant experiments is given in Maurer
and Libchaber [8] for small aspect ratio enclosures.
The geometry of the cell is a parallelepiped cell with
a base 1.6 x 2.8 mm and a height of 0.85 mm and thus
has a 3.3:1.9:1 geometry. The flow field at the onset
of convection is a three short roll structure. In the
experiments, this was dislodged by increasing the
Rayleigh number to around 4 x 10* and then reducing
it back to the earlier value (quenching operation).
This resulted in a two-roll structure that was required
for their experiments. The question that we ask here
is the following : can the transition from three rolls to
two rolls be accomplished without the rapid heating
and cooling sequence? Do we observe a three-dimen-
sional pattern after transition? The Prandt] number
of liquid helium is 0.5 for a temperature of 3 K and a
pressure of three atmospheres as in the experiments.

To that end, a three-roll structure was generated by
perturbations at a Rayleigh number of 6000 and there-

J

e N O O S

-
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FIG. 8. Transition sequence from three to two rolls. Time interval of 0.6, Ra = 16 000.
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after increased in steps of 2000. A 30 x 20 x 20 grid
for a 3.3:1.9:1 box of the experiments was used for
the computations. The three-cell pattern shown in Fig.
7 remains unchanged up to a Rayleigh number of
14000. The three-roll convective pattern was found
to unravel at a Rayleigh number of 16000, The insta-
bility sequence is shown in Fig. 8. The sequence shown
is at time intervals of 0.6 except for the last set. The
first three sequences seem to indicate that the SV
instability is in place. We observe the typical slanting
of the roll axis. The next four sequences are, however,
more complicated. It seems like the flow pattern was
getting towards a single cell pattern parallel to the
long side. However, long time simulation clearly indi-
cates that the asymptotic flow pattern is actually an
oscillating two-cell structure parallel to the short side.
An instantaneous snapshot of the oscillating flow is
shown in Fig. 8(h). Thus, a three-dimensional pattern
is not observed and the transition is from three to

two rolls. The mean two-roll flow pattern after the
transition is shown in Fig. 9.

The oscillating flow and temperature field can now
be analyzed in greater detail. The velocity field at a
vertical section z = 1.6 for one complete time period
is shown in Fig. 10. The time period is roughly 0.17.
The oscillating isotherms for one complete period are
shown for the horizontal section y = 0.75 in Fig. 11.
The results show clearly that the oscillations are in the
form of stationary waves parallel to the roll axis and
similar to that of a vibrating string. The side walls are
the nodes and the core region where the oscillation is
maximum is called the antinode. The rolls are mostly
oscillating up and down. A considerable amount of
roll excursion was also seen by Upson et al. [13] in
their computations.

Note that flow visualization is not possible for
liquid helium. Based on the work of others, as men-
tioned by Maurer and Libchaber [8], it was concluded
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that the oscillation is in the form of travelling waves.
Based on the results of this simulation we can now
say with confidence that this is not the case. A standing
wave pattern that is a superposition of travelling
waves generated at the core region and subsequent
reflection off the side walls perpendicular to the roll
axis is what was observed.

THREE-ROLL TRANSITION FOR WATER

In this section the stability of a three-roll convection
for the same parameters as used in the experiments of
GB is examined. Consequently, the Prandt! number
of the fluid is taken to be 2.5 fora 3.5:2.1:1 box. It
is intriguing that a three-roll convection pattern for a
Prandtl number of 5.0 was presented by GB, but no
such pattern was reported for Pr = 2.5. Does that
mean that a stable three-roll pattern does not exist for
Pr = 2.57 In this section we examine the stability of
the three-roll pattern by numerical simulations.

The three-roll convection shown in Fig. 12 was
generated as usual by velocity perturbations. The pur-
pose of the simulation was to see if there was a tran-
sition from a three-roll to a two-roll configuration as
in the case of liquid helium. A 30 x 20 x 20 grid was
used for these sets of simulations.

The results demonstrate that up to a Rayleigh num-
ber of 24000, the three-roll configuration is quite
stable. The flow becomes unstable between Rayleigh
numbers of 24 000 and 26 000. The sequence of insta-
bility is shown in Figs. 13(a)—(f), also in the form of
velocity vectors and isotherms for the same location.
The instability mechanism is the same SV pattern that
was observed in the long roll transition sequence. The
final result is a pattern consisting of three rectangular
cells, as shown in Fig. 14, The rectangular cell pattern
remained stable up to a Rayleigh number of 50000.
At that Rayleigh number the flow breaks down.

The break down is accompanied by strong time
dependence. The runs were continued until the asymp-
totic state was reached. The results are shown in Figs.
15(a) and (b), which correspond to a grid location of
(10,7,7). We observe broadband noise and the phase
trajectory is highly irregular. A Lyapunov cxponent
calculation based on the algorithm given in Wolf er
al. [22] shows that the largest Lyapunov exponent is
positive. Although the flow is aperiodic, as can be seen
in Fig. 15(a), the mean flow does show some structure.
The flow structure can be described as cellular con-
vection that has one big enclosure size rectangular
cell. This bifurcation thus represents a change directly
from steady to chaotic convection that is sometimes
known as snap-through bifurcation [2]. This sequence
is similar to what is observed in the case of inter-
mediate and large aspect ratio boxes [23]. The effect
of the fluid Prandtl number on the stability and sub-
sequent evolution of a three-roll pattern is therefore
quite dramatic.

D. MukutMmont and K. T. Yang

FOUR-ROLL TRANSITION FOR AIR

The final transition sequence simulated draws from
some of the experimental results due to Kirchartz and
Oertel [9]. In that paper, among other things the loss
of roll phenomena was examined experimentally.
Experiments were carried out for three different fluids
(air, water and silicone oil) and two different geome-
tries (10:4:1 and 4:2:1). Of these, the transition
from four rolls to three rolls in a 4:2:1 box for air
(Pr = 0.71) has been chosen for simulation purposes.
A 40 x 20 x 20 grid was sclected and this conforms to
the prescription of the grid refinement study.

Experimentally, there is one major difference: the
boundary conditions at the side wall are closer to
those of infinite conductivity than adiabatic
conditions. Therefore, the simulations do not exactly
match the experimental conditions. The purpose of
the simulations is not to duplicate the experimental
results but rather to see what would happen if the
side walls were insulated instead. Note that such a
boundary condition is difficult to impose for air since
the thermal conductivity of air is very small. Thus
additional insights could be obtained and this would
be one of the many ways in which simulations comp-
lement experiments.

In this study, a four-roll pattern (Fig. 16) was gen-
crated parallel to the short side by the usual technique
of velocity perturbations. The simulations were
started with a Rayleigh number of 4000, progressively
increased in steps of 2000. The stability of the four-
roll configuration was thus studied by numerical com-
putations. The four-roll structure is stable up to a
Rayleigh number of 8000. Between Rayleigh numbers
of 8000 and 10000 the flow loses stability.

That the flow changes as a result of this instability
is shown in Fig. 17. The instability is unmistakably
skewed varicose with the typical slanting of the rolls
that ensues. What we therefore see is the same four-
roll to three-roll transition but at a Rayleigh number
which is much lower. It seems that having perfectly
conducting walls does not really alter the physics of
the transition process. Rather, it allows the four-roll
pattern to rctain its stability for higher Rayleigh
numbers.

DISCUSSION AND CONCLUSIONS

From the results of the simulation, it can be said
that the effect of the wall is to stabilize fully three-
dimensional patterns in the case of moderate Prandil
number fluids such as water, whereas three-dimen-
sional patterns were possible only for high Prandti
number fluids [6, 24]; friction at the walls makes it
possible to have rectangular cell patterns for Prandtl
number fluids that are lower. However, if the Prandtl
number is sufficiently low, as in the case of liquid
helium and air, no three-dimensional patterns can be
observed in the time-averaged sense. The flow pattern
was always found to be roll-like.
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With respect to long rolls it can be said that stable
long rolls for small aspect ratio boxes are possible
but only below a certain Rayleigh number. The flow
eventually undergoes two separate bifurcations and
becomes oscillatory. The dynamical behavior of the
flow beyond the oscillatory regime is currently being
looked into.
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SELECTION DE NOMBRE D'ONDE POUR LA CONVECTION DE RAYLEIGH--BENARD
DANS UNE CAVITE A FAIBLE RAPPORT DE FORME

Résumé—On étudie numériquement la convection de Rayleigh-Bénard dans des cavités a faible rapport
de forme et ayant des parois latérales isolées. On suppose un fluide be Boussinesq. On considére les
bifurcations et la physique du champ d’écoulement pour trois rapports de forme 3.3:1,9:1,3.5: 2,1: 1 et
4:72: 1 et trois nombres de Prandtl 0,5, 0,71 et 2,5. On trouve que les rouleaux paralléles au plus long coté
sont stables seulement pour un nombre de Rayleigh inférieur a 20000 avec la géométrie 3,5: 2,1: 1 dans
le cas de I'eau (Pr = 2,5). Avec la géométrie 3,3: 1,9: 1 et 'hélium liquide (Pr = 0,5), la transition de la
configuration 4 trois cellules vers celle & deux cellules est accompagnée d’une grande dépendance au temps.
Avec la géométrie 4: 2: [ et I'air (Pr = 0,71), la transition entre quatre et trois rouleaux est un résultat de
I'instabilité variqueuse oblique.
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EINFLUSS DER WELLENZAHL AUF DIE RAYLEIGH-BENARD-KONVEKTION IN
EINEM HOHLRAUM MIT KLEINEM SEITENVERHALTNIS

Zusammenfassung—Die vorliegende numerische Arbeit befaBt sich mit der Rayleigh-Benard-Konvektion
in einem Hohlraum mit isolierten Seitenwinden und kleinem Seitenverhédltnis. Es wird ein Boussinesq-
Fluid zugrundegelegt. Fiir drei unterschiedliche Seitenverhéltnisse (3,3:1,9:1;3,5:2,1:1;4:2: 1) und drei
unterschiedliche Prandtl-Zahlen (0,5; 0,71; 2,5) wurde die Strémungsaufteilung festgehalten und die
Physik des Stromungsfeldes hinterleuchtet. Dabei hat sich herausgestellt, daB Stromungswalzen parallel
zur Langsseite nur bei einer Rayleigh-Zahl von 20000 fiir die Geometrie 3,5:2,1: 1 mit Wasser (Pr = 2,5)
als Versuchsstoff stabil sind. Bei der Geometrie 3,3 : 1,9 : 1 mit fliissigem Helium (Pr = 0,5) ist der Ubergang
von einer 3-zelligen zu einer 2-zelligen Struktur stark zeitabhingig. Bei der Geometrie 4:2:1 mit Luft
(Pr = 0,71) ist der Ubergang von einer 4-zelligen zu einer 3-zelligen Struktur das Ergebnis der “skewed-
varicose”’-Instabilitit.

BBIBOP BOJIHOBOTI'O YHCIJIA JJ1s1 KOHBEKLIUU PAJIESI-BEHAPA B ITOJIOCTU C
MAJIBIM OTHOIMEHHUEM CTOPOH

Annorauns—UrcieHHo uccienyeTcs KoHBekuua Panes-benapa B moJiocTsx ¢ MasibiM OTHOUIEHHEM
CTOPOH H H30JINPOBAHHBIMH GOKOBLIMHU cTeHKaMu. Hcnonb3yeTcs npuniamxende byccunecka. Habmona-
JIACh Pa3BCTBJICHAA TEYCHHA H HCCJICNOBAJIMCH XapaKTEPHCTHKH IIOJIA TEYEHHA NPH TPEX Pa3IMYHBIX
OTHOILIEHUSX CTOpoH (3,3:1,9:1;3,5:2,1: 11 4: 2: 1) n Tpex paznuuubix yuciax [Ipanarns ans xua-
xoctd (0,5; 0,71 u 2,5). HaiineHo, 9ro Bansl, napasule/ibHble JIMHHOH CTOPOHE, YCTORYMBAEL TOJILKO TIPH
uncie Panes ke 20000 mis oTHowmerns cropoH 3,5:2,1: 1 ¢ ucnonb3oBanneM sonsl (Pr = 2,5) B
kayecTBe paboueii xuakoctu. Ilpu oTHomennu cropon 3,3: 1,9 : 1 ¢ ucnoas3oBannem renus (Pr = 0,5)
IUIS TIEPEXOa OT TPEXBAYECHCTOR CTPYKTYPbl K ABYXBSUEHCTOH XapaKTepHa CHUIbHAA 3aBHCHMOCTb OT
BpemeHH. O6HApYXEHO, YTO TEPEXOA OT HETBIPEX K TPEM BaJiaM IIPH OTHOLUEHMH CTOpOoH 4:2:1 ¢
HCI0JIb30BaHHeM Bo3nyxa (Pr = 0,71) o6yciioBieH HEYCTOHYMBOCTBIO B OCHOBAHHH BaJia.
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