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Abstract-The present numerical study is directed towards Rayleigh~Benard convection with insulated 
side walls for small aspect ratio enclosures. A Boussinesq fluid is assumed. Bifurcations have been docu- 
mented and the physics of the flow field have been looked into for three different aspect ratios, 3.3 : 1.9 : I, 
3.5 : 2. I : I and 4: 2 : I, and three different fluid Prandtl numbers, 0.5, 0.71 and 2.5. It was found that rolls 
parallel to the long side are stable only below a Rayleigh number of 20000 for a 3.5 : 2.1 : I geometry with 
water (Pr = 2.5) as the fluid. For the 3.3 : 1.9: I geometry with liquid helium (Pr = 0.5) the transition from 
a three-cell to a two-cell pattern is accompanied by strong time dependence. For the 4 : 2 : I geometry with 
air (Pr = 0.71) the transition from four to three rolls was found to be a result of the skewed varicose 

instability. 

INTRODUCTION (henceforth referred to as long rolls). Furthermore, 

THE IMPORTANCE of Rayleigh-Benard convection, i.e. 
Kolodner et al. [6] did in fact observe long rolls exper- 

natural convection in the heated from below case, 
imentally for intermediate and large Prandtl number 

is well recognized in the literature. Aside from its 
fluids. This paper looks into the stability of long rolls 

relevance to some practical applications. it is inher- 
for moderate Prandtl number fluids by direct numeri- 

ently unstable and provides a unique and useful physi- 
cal simulation. 

cal situation to study the dynamics of a non-linear 
This is an important issue. Small aspect ratio RB 

system governed by partial differential equations. One 
convection with short rolls have been used in the 

striking non-linear phenomenon of Rayleigh-Benard 
past [7, 81 to study the various routes to chaos and 

convection is the so-called pattern selection process 
turbulence. If stable long roll patterns can indeed be 

[I]. This refers to the observation that even for the 
generated this could be a useful starting point for 

same set of parameters the system generates a rich 
further investigations in the time-dependent domain. 

selection of different flow structures that are breath- 
Assuming that the flow structure retains its stability, 

taking in their variety. 
further insights into the transition phenomenon can 

One typical flow pattern which has received con- 
be found by perhaps uncovering some additional 

siderable attention in the past is roll convection 121. 
routes to turbulence. On the other hand, if stable and 

As shown in Fig. 1, the flow consists of two-dimen- 
regular flow patterns cannot be maintained, it is of 

sional cells (with the exception of wall effects) that are 
interest to know the mechanism as well as the outcome 

roughly square in cross-section. In this paper we look 
of the change as the Rayleigh number is increased. 

into some of the critical issues of roll convection with 
The second related question is with respect to the 

the help of direct numerical simulations and, in par- 
curious phenomenon of ‘loss of rolls’ observed exper- 

titular, roll convection and pattern selection in small 
imentally for intermediate and large aspect ratio boxes 

aspect ratio enclosures (aspect ratios less than 5). We 
basically address two related issues in the pattern 
selection problem of rolls, otherwise known as the 
wavenumber selection problem. 

Firstly, early theoretical [3] and experimental 
results [4] seem to suggest that convective rolls in 
rectangular boxes invariably align themselves parallel 
to the shorter horizontal dimension of the rectangular 
enclosure. Later theoretical results [5] showed in a 
definitive manner that although rolls parallel to the 
short side are more likely (henceforth referred to as 
short rolls), rolls parallel to the long side do exist 
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FIG. I. Schematic diagram of Rayleigh -Benard convection 
in the form of rolls. 
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NOMENCLATURE 

aspect ratio in the x-direction 
aspect ratio in the z-direction 
acceleration due to gravity [m’ s ‘1 
height of the enclosure [m] 
Nusselt number 
non-dimensional pressure 

v/x, Prandtl number 
g~ATL”/va, Rayleigh number 
non-dimensional time 
non-dimensional temperature 
cold wall temperature [‘Cl 
hot wall temperature [“C] 
( TH + T,)/Z, mean temperature FC] 
non-dimensional velocity vector 
non-dimensional .r-direction velocity 

L non-dimensional y-direction velocity 
W’ non-dimensional -direction velocity 

.Y non-dimensional horizontal spatial 

coordinate 

J non-dimensional vertical spatial 
coordinate 

2 non-dimensional spatial coordinate in 
the direction of depth. 

Greek symbols 

; 

thermal diffusivity [m’ s _ ‘1 
coefficient of volume expansion [K ‘1 

AT temperature difference, T, - T, [“Cl 
V kinematic viscosity [m* s- ‘f 

P density [kg m ‘1. 

by many [6, 9, IO]. This relates to the fact that the 
wavenumber of the rolls decreases with an increase in 
Rayleigh number as a consequence of discrete tran- 

sitions (decrease) in the number of rolls. Busse and 
Clever [l I] showed theoretically that this is a conse- 
quence of the skewed varicose instability for RB con- 
vection without side walls. Nevertheless, the phenom- 
enon is still not well understood for RB convection 
with side walls. Some doubts still remain, particularly 

since some of the earlier analyses [12] predicted just 
the opposite, i.e. an increase of wavenumber with an 
increase in Rayleigh number. 

In this paper, this phenomenon has also been 
looked into with the aid of numerical simulation but 
is limited to small boxes. We are not aware of any 
previous attempts at numerical simulations of the roll 
transition phenomenon, although there have been 
failures [ 131. A numerical investigation can potentially 
provide much more insight into the problem since it 
is possible to take a look at the flow and temperature 
field to an extent that cannot be matched exper- 
imentally. A numerical investigation was therefore 
undertaken keeping these things in mind. 

GOVERNING EQUATIONS AND 

FORMULATIONS 

The geometry of the enclosure is shown in Fig. 1. 
The vertical walls are all adiabatic. The bottom wdll 

is heated and the top wall is cooled, both isothermally. 
The fluid is Boussinesq, i.e. we assume that all trans- 
port properties of the fluid are constant with the 
exception of the buoyancy term in the nlomentum 
equations, which is linearized. The governing equa- 
tions are non-dimensionalized by suitable scales of the 
dependent and independent variables. The x, y, and z 
coordinates were scaled by L, the enclosure height, 
the velocities were scaled by ix/L, the time by L*jsc, and 
the equilibrium hydrostatic pressure in the absence of 

a temperature gradient was scaled by pct’/L’. The 
temperature was non-dimensionalized by T- TJAT, 
AT = T, - T,, and T, = ( TH + Te)/Z, E is the thermal 
diffusivity and p is the fluid density. The non-dimen- 
sionalized governing equations for the Boussinesq 
equations are the following [2] : 

v*LJ=o U? 

au ^ 
,+V*(uU)= -z;+PrV’rr 

aw 
& +v-(WU) = -g +PrV’w (4) 

8T 
t +V*(TU) = V’T. 

The boundary conditions consistent with the adia- 
batic and isothermal walls in a non-dimensional form 
are the following : 

u=u=w=o T-0.5-y. (8) 

Note that the non-dimensional pressure is actually the 
pressure difference between the local and the hydro- 
static pressure under isothermal and quiescent 
conditions. 

The governing equations are solved in primitive 
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variables in a uniform, three-dimensional staggered 

grid based on the control volume method [14]. The 
QUICK scheme is used in the finite difference for- 
mulation of the convective terms to minimize numeri- 
cal diffusion effects [ 151. The SIMPLEX algorithm 
[16] was used to solve the coupled heat transfer and 
fluid flow problem which is essentially a more implicit 
variant of SIMPLE. The time step was typically 0.001. 

VALIDATION AND GRID REFINEMENT 

For three-dimensional RB convection in a box there 
is no analytical solution for even the limiting cases. It 

therefore becomes necessary to compare the numeri- 
cal solution with experiments. The interferometric 
results of Farhadieh and Tankin [17] were used for 
comparison. The details of the validation are given 

elsewhere [ 181. Internal checks on the accuracy and 
consistencies show that the average Nusselt numbers 

at the cold and hot walls, which is a test of global 
energy balance, were equal to within machine pre- 
cision when steady state was reached. The continuity 
equation was satisfied for every control volume to 
within machine precision as well. A detailed grid 
refinement study has been reported elsewhere [19] and 
will not be repeated here. The study revealed that J 
horizontal resolution of 0.1 and a vertical resolution 
of 0.05 were a good compromise between accuracy 

and coinputational expenses. 

STABILITY OF LONG ROLLS 

We study the stability of long rolls by numerical 
simulation. The aspect ratios are taken to be 3.5 and 
2.1 and the Prandtl number is set at 2.5. These par- 
ameters are the same as in the experiments of Gollub 
and Benson [7]. However, in their investigation the 
flow field consisted of two counter-rotating rolls par- 
allel to the short side. In contrast what we have here 
are two counter-rotating rolls parallel to the long side. 
The two are the same except that the wavenumber of 
the long rolls is somewhat larger. The two-roll struc- 
ture is generated with velocity perturbations (Fig. 2) 
as given in Mukutmoni and Yang [18]. All com- 
putations were carried out with a 30 x 20 x 30 grid, 
which is consistent with the grid refinement study. 

In the two-roll structure, the fluid rises along the 
side walls and descends along the plane of symmetry in 
between the rolls. The flow is mostly two-dimensional 
except near the walls and some weakly axial flow as 
mentioned in Mukutmoni and Yang [19]. The numeri- 
cal investigation was carried out as follows: com- 
putations were started with a Rayleigh number of 
4000. Then, using the steady state velocity and tem- 
perature field as an initial condition, the Rayleigh 
number was increased in steps of 2000. The other 
parameters, which are the aspect ratios and Prandtl 
number, were of course not changed. 

It was found that between Rayleigh numbers of 
18 000 and 20 000 the two-roll structure changed dra- 

Rayleigh-B&iard convection 
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FIG. 2. Isotherms (a), velocity vectors (b) and sectional 
streamlines (c) for Ru = 14 000 at the vertical plane z = 1.44 

for long rolls. 

matically. The outcome of the change is a structure 
that is fully three-dimensional (Fig. 3) as a result of 
secondary flows parallel to the roll axis. The planform 
structure can be described as four rectangular cells 
each having the same aspect ratio as that of the enclos- 
ure itself. Thus, unlike the rolls, the spatial periodicity 
is present in both directions [20]. 

The computed pathlines shown in Fig. 4 give some 

additional information about the flow topology. It 
appears that the flow is rising along all four side walls 
and descending at the center of the horizontal 
planform. A perfect four-fold symmetry that was evi- 
dent before the transition is still preserved and the 
flow field is still time independent. As the Rayleigh 
number is increased further the flow field becomes 
oscillatory and also the mean flow suffers qualitative 
structural changes between Rayteigh numbers of 
34 000 and 36 000. 

As seen in Fig. 5, the mean flow can now be 
described as two rectangular cells in the horizontal 
planform. Thus, it now has a two-fold symmetry 
about one of the vertical planes. Symmetry breaking 
bifurcation is typical of RB convection [2]. The Nus- 
selt numbers as a function of the Rayleigh number are 
given in Fig. 6. Note that we see no discontinuity in 
the Nusselt number as a result of the transition from 
the roll planform to a rectangular planform. The flow 
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FIG. 5. The mean velocity field for Ra = 36 000 at the hori- 

zontal section r = 0.8. 

transition from an essentially two-dimensional flow 
structure to a three-dimensional one is a novel 

phenomenon and has not been documented for small 
aspect ratio boxes and moderate Prandtl numbers, 
either experimentally or numerically. However, the 
phenomenon is not surprising. Kolodner et al. [6] 
documented a transition from long rolls to bimodal 
convection for a high Prandtl number fluid, which is 
similar to the transition that one observes in this case. 

Transition from long rolls to short rolls reported in 
Mukutmoni and Yang [18] can be simulated between 
Rayleigh numbers of 24000 and 26000. However, 

0 1 2 3 4 

Ra*iO-d 

FIG. 6. The average Nusselt number as a function of the 
Rayleigh number for long rolls. (a) Rigid vertical walls with- 
out forcing. (b) Rigid vertical walls with forcing. (c) Vertical 
slip walls with forcing. (d) Rigid vertical waits for short rolls. 

finite perturbations were required. The perturbations 
generated from the calculations so far caused by 
machine round-off errors are practically infinitesimal. 
For finite perturbations, the Rayleigh number of the 
fluid was increased abruptly to a very high value and 
then brought back to the same state. Physically, this 
means that the fluid has been suddenly heated and 
then cooled. This ‘quenching’ operation has been used 
by Giglio et al. [21] in their experiments. Note that if 
this approach is not used, the rectangular cell pattern 
was found to be quite stable and no transition 
occurred. Therefore, it can be said that the rectangular 
cell pattern is metastable, i.e. it is stable to infinitesimal 
perturbations but not finite ones. 

FIG. 7. Isotherms (a), sectional streamlines (b) and velocity vectors (c) for Ra = 14000 at the vertical plane 
z = 1.6. 
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The Nusselt number as a function of the Rayleigh 
number, which shows the forced transition from long 
to short rolls, is depicted in Fig. 6. Note that after 
transition there is a drop in the Nusselt number. This 
is to be expected, since the wavenumber after the 
transition has decreased. For the purpose of com- 
parison, the Nusselt number variation for the short 
rolls is also shown. The flow field after transition 
is indistinguishable from a short roll pattern. If the 
vertical side walls are assumed to be stress-free, the 
same qualitative behavior is observed, except that the 
two transitions occur at lower Rayleigh numbers. 

Also, the Nusselt numbers for the same Rayleigh num- 
ber are higher (Fig. 6). 

TRANSITIONS IN LIQUID HELIUM 

It is known that the Prandtl number of the fluid 

significantly affects the transition phenomena. For 
that reason we now study the stability of roll con- 
vection for liquid helium, which has a much lower 

Prandtl number of 0.5. However, we restrict ourselves 
to short rolls for which experiments have been per- 
formed, most notably by Libchaber and co-workers. 

One of the relevant experiments is given in Maurer 
and Libchaber [S] for small aspect ratio enclosures. 
The geometry of the cell is a parallelepiped cell with 
a base 1.6 x 2.8 mm and a height of 0.85 mm and thus 
has a 3.3 : 1.9 : 1 geometry. The flow field at the onset 
of convection is a three short roll structure. In the 

experiments, this was dislodged by increasing the 

Rayleigh number to around 4 x 1 O4 and then reducing 
it back to the earlier value (quenching operation). 
This resulted in a two-roll structure that was required 
for their experiments. The question that we ask here 
is the following : can the transition from three rolls to 
two rolls be accomplished without the rapid heating 
and cooling sequence? Do we observe a three-dimen- 
sional pattern after transition‘? The Prandtl number 
of liquid helium is 0.5 for a temperature of 3 K and a 
pressure of three atmospheres as in the experiments. 

To that end, a three-roll structure was generated by 
perturbations at a Rayleigh number of 6000 and there- 
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FIG. 8. Transition sequence from three to two rolls. Time interval of 0.6, Rrr = 16000. 
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(h) 

after increased in steps of 2000. A 30x20 x20 grid 
for a 3.3 : 1.9 : 1 box of the experiments was used for 
the computations. The three-cell pattern shown in Fig. 
7 remains unchanged up to a Rayleigh number of 
14000. The three-roll convective pattern was found 
to unravel at a Rayleigh number of 16 000. The insta- 
bility sequence is shown in Fig. 8. The sequence shown 
is at time intervals of 0.6 except for the last set. The 
first three sequences seem to indicate that the SV 
instability is in place. We observe the typical slanting 
of the roll axis. The next four sequences are, however, 

more complicated. It seems like the flow pattern was 
getting towards a single cell pattern parallel to the 
long side. However, long time simulation clearly indi- 
cates that the asymptotic flow pattern is actually an 
oscillating two-cell structure parallel to the short side. 
An instantaneous snapshot of the oscillating flow is 
shown in Fig. 8(h). Thus, a three-dimensional pattern 
is not observed and the transition is from three to 

two rolls. The mean two-roll flow pattern after the 
transition is shown in Fig. 9. 

The oscillating flow and temperature field can now 
be analyzed in greater detail. The velocity field at a 
vertical section z = 1.6 for one complete time period 
is shown in Fig. 10. The time period is roughly 0.17. 
The oscillating isotherms for one complete period are 
shown for the horizontal section y = 0.75 in Fig. 11. 
The results show clearly that the oscillations are in the 

form of stationary waves parallel to the roll axis and 
similar to that of a vibrating string. The side walls are 
the nodes and the core region where the oscillation is 
maximum is called the antinode. The rolls are mostly 
oscillating up and down. A considerable amount of 
roll excursion was also seen by Upson et al. [ 131 in 
their computations. 

Note that flow visualization is not possible for 
liquid helium. Based on the work of others, as men- 
tioned by Maurer and Libchaber [8], it was concluded 
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that the oscillation is in the form of travelhng waves. 

Based on the results of this simulation we can now 
say with confidence that this is not the case. A standing 
wave pattern that is a superposition of travelling 
waves generated at the core region and subsequent 
reflection off the side walls perpendicular to the roll 

axis is what was observed. 

THREE-ROLL TRANSITION FOR WATER 

In this section the stability of a three-roll convection 
for the same parameters as used in the experiments of 
GB is examined. Consequently, the Prandtl number 
of the fluid is taken to be 2.5 for a 3.5 : 2.1 : 1 box. It 
is intriguing that a three-roll convection pattern for a 
Prandtl number of 5.0 was presented by GB, but no 
such pattern was reported for Pv = 2.5. Does that 
mean that a stable three-roll pattern does not exist for 
Pr = 2.5? In this section we examine the stability of 

the three-roil pattern by numerical simulations. 
The three-roli convection shown in Fig. 12 was 

generated as usual by velocity perturbations. The pur- 
pose of the simulation was to see if there was a tran- 
sition from a three-roll to a two-roll configuration as 
in the case of liquid helium. A 30 x 20 x 20 grid was 
used for these sets of simulations. 

The results demonstrate that up to a Rayleigh num- 
ber of 24000, the three-roll configuration is quite 
stable. The flow becomes unstable between Rayleigh 
numbers of 24 000 and 26 000. The sequence of insta- 
bility is shown in Figs. 13(a)-(f), also in the form of 
velocity vectors and isotherms for the same location. 

The instability mechanism is the same SV pattern that 
was observed in the long roil transition sequence. The 
final result is a pattern consisting of three rectangular 
cells. as shown in Fig. 14. The rectangular cell pattern 
remained stable up to a Rayleigh number of 50000. 
At that Rayleigh number the flow breaks down. 

The break down is accompanied by strong time 
dependence. The runs were continued until the asymp- 
totic state was reached. The results are shown in Figs. 
15(a) and (b), which correspond to a grid location of 
(10,7,7). We observe broadband noise and the phase 
trajectory is highly irregular. A Lyapunov exponent 
calculation based on the algorithm given in Wolf et 
al. 1221 shows that the largest Lyapunov exponent is 

positive. Although the flow is aperiodic, as can be seen 
in Fig. 15(a), the mean flow does show some structure. 
The flow structure can be described as cellular con- 
vection that has one big enclosure size rectangular 
cell. This bifurcation thus represents a change directly 
from steady to chaotic convection that is sometimes 
known as snap-through bifur~tion [2]. This sequence 
is similar to what is observed in the case of inter- 
mediate and large aspect ratio boxes 1231. The effect 
of the fluid Prandtl number on the stability and sub- 
sequent evolution of a three-roll pattern is therefore 
quite dramatic. 

FOUR-ROLL TRANSITION FOR AIR 

The final transition sequence simulated draws from 
some of the experimental results due to Kirchartz and 
Oertel 191. In that paper, among other things the loss 
of roll phenomena was examined experimentally. 
Experiments were carried out for three different fluids 
(air, water and silicone oil) and two different geome- 
tries (10:4: I and 4: 2: 1). Of these, the transition 
from four rolls to three rolls in a 4 : 2 : I box for air 
(Pr = 0.71) has been chosen for simulation purposes. 
A 40 x 20 x 20 grid was sclectcd and this conforms to 
the prescription of the grid refinement study. 

Experimentally, there is one major difference : the 
boundary conditions at the side wall are closer to 
those of infinite conductivity than adiabatic 
conditions. Therefore. the simulations do not exactly 
match the experimental conditions. The purpose of 
the simulations is not to duplicate the experimental 

results but rather to see what would happen if the 
side walls were insulated instead. Note that such a 
boundary condition is dithcult to impose for air since 
the thermal conductivity of air is very small. Thus 
additional insights could be obtained and this would 
be one of the many ways in which simulations comp- 
lcment experiments. 

In this study, a four-roll pattern (Fig. 16) was gen- 
crated parallel to the short side by the usual technique 
of velocity perturbations. The simulations were 
started with a Rayleigh number of 4000, progressively 
increased in steps of 2000. The stability of the fbur- 

roll configu~dtion was thus studied by numerical corn-- 
putations. The four-roll structure is stable up to a 
Raylcigh number of 8000. Between Raylcigh numbers 
of 8000 and 10 000 the flow loses stability. 

That the flow changes as a result of this instability 
is shown in Fig. 17. The instability is unmistakably 
skewed varicose with the typical slanting of the rolls 
that ensues. What we therefore see is the same four- 
roll to three-roll transition but at a Rayleigh number 
which is much lower. It seems that having perfectly 

conducting walls does not really alter the physics of 
the transition process. Rather, it allows the four-roll 
pattern to retain its stability for higher Rayleigh 

numbers. 

DISCUSSION AND CONCLUSIONS 

From the results of the simulation, it can be said 
that the effect of the wall is to stabilize fully three- 
dimensional patterns in the case of moderate Prandtl 
number fluids such as water, whereas three-dimen- 
sional patterns were possible only for high Prandtl 
number fluids [6, 241; friction at the walls makes it 
possible to have rectangular cell patterns for Prandtl 
number fluids that are lower. However, if the Prandtl 
number is su~ciently low, as in the case of liquid 
helium and air, no three-dimensional patterns can be 
observed in the time-averaged sense. The flow pattern 
was always found to be roll-like. 
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With respect to long rolls it can be said that stable 
long rolls for small aspect ratio boxes are possible 
but only below a certain Rayleigh number. The flow 
eventually undergoes two separate bifurcations and 
becomes oscillatory. The dynamical behavior of the 
flow beyond the oscillatory regime is currently being 
looked into. 
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SELECTION DE NOMBRE D’ONDE POUR LA CONVECTION DE RAYLEIGH -BENARD 
DANS UNE CAVJTE A FAJBLE RAPPORT DE FORME 

R&sum&-On ttudie numeriquemcnt la convection de Rayleigh--Benard dans dcs cavites a faible rapport 
de forme et ayant des parois laterales isolees. On suppose un fluide be Boussinesq. On considere les 
bifurcations et la physique du champ d’ecoulement pour trois rapports de formc 3.3 : I ,9 : 1, 3.5 : 2, I : 1 et 
4 : 2 : I et trois nombres de Prandtl 0,5,0,7 I et 2,5. On trouve que les rouleaux paralleles au plus long cdte 
sont stables settlement pour un nombre de Rayleigh infirieur a 20 000 avec la gtometrie 3,5 : 2,1 : I dans 
le cas de I’eau (Pr = 2.5). Avec la geometric 3.3 : l,9: I et l’htlium liquide (Pr = 0.5) la transition de la 
configuration a trois cellules vers celle a deux cellules est accompagnte d’une grande dependance au temps. 
Avec la geometric 4: 2 : I et I’air (Pr = 0,71), la transition entre quatre et trois rouleaux est un resultat de 

I’instabilite variqueuse oblique. 
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EINFLUSS DER WELLENZAHL AUF DIE RAYLETGH-BENARD-KONVEKTION IN 
EINEM HOHLRAUM MIT KLEINEM SEITENVERHALTNIS 

Zusammenfassung-Die vorliegende numerische Arbeit befabt sich mit der RayleighhBenard-Konvektion 
in einem Hohlraum mit isolierten Seitenwlnden und kleinem Seitenverhaltnis. Es wird ein Boussinesq- 
Fluid zugrundegelegt. Fur drei unterschiedliche Seitenverhlltnisse (3,3 : 1,9 : 1 ; 3,5 : 2,l : 1 ; 4 : 2 : 1) und drei 
unterschiedliche Prandtl-Zahlen (0,5 ; 0,71 ; 2,5) wurde die Striimungsaufteilung festgehalten und die 
Physik des Striimungsfeldes hinterleuchtet. Dabei hat sich herausgestellt, da0 Strdmungswalzen parallel 
zur Langsseite nur bei einer Rayleigh-Zahl von 20 000 fur die Geometrie 3,5 : 2,l : 1 mit Wasser (Pr = 2,5) 
als Versuchsstoff stabil sind. Bei der Geometrie 3,3 : 1,9 : 1 mit fliissigem Helium (Pr = 0,5) ist der ijbergang 
von einer 3-zelligen zu einer 2-zelligen Struktur stark zeitabhangig. Bei der Geometrie 4 : 2 : 1 mit Luft 
(Pr = 0,71) ist der Ubergang von einer 4-zelligen zu einer 3-zelligen Struktur das Ergebnis der “skewed- 

varicose”-Instabilitat. 

BbIBOP BOJIHOBOI-0 9ACJIA JJJIR KOHBEKIJHM PXIEJI-BEHAPA B I-IOJIOCTM C 
MAJIbIM OTHOIIIEHWEM CTOPOH 

hoTalmR_%cnekmo HccneAyeTcn KOHBeKUHH Psnen-Seriapa B IlOnOCTXX c MINIM OTHOUIeHBeM 

CTOPOHH H30nNpOBaHHblMB ~~KoB~IME~~T~HK~MH.~C~O~~~~~TC~ nparIJIumeHHe 6yCCEiHeCKa.Ha6nloAa- 

nHCb pa3BeTBneHHK TCYeHHl B BCCneAOBiUHCb XapaKTepEiCTLiKEi non,, TeYeHHl I'IpH TpeX pa3nWIHbIX 

OTHOUleHAIlXCTOpOH (3,3: 1,9: I;3,5: 2,1: 1 H 4: 2: 1)El TpeX pa3nH'fHblX WCnaX npaHATnKAJIK XG%A- 

KOCTH (0,5;0,71 u 2,5). HaiiAeHO, YTO BanbI,napannenbHbre AnHHHOti CTopoHe, yCTOi%wBbl TOnbKO npe 

gucne Psner HAEe 20000 AJIK OTHOuIeHsiK CTO~OH $5: 2,1 : 1 c IICnonb3oBaHHeM n0Ab1 (Pr = 2,5) B 
KaVeCTBe pa6oveii XCKBAKOCTN. npH OTHOUleHWi CTOpOH 3,3: 1,9: 1 C HClIOnb30BaHNeM renllll (Pr = 0,5) 
n,tll nepeXOAa OT TpeXbK~eWTOii CTpyKTypU K AByXWIeHCTOii XapaKTepHa CitnbHalI 3aBWCWMOCTb OT 

BpeMeHEi. 06HapyxeH0, YTO IIepeXOA OT 'leTbIpeX K TpeM BanaM IIpH OTHOlIIeHBB CTOpOH 4:2: 1 C 

HCnOnb30BaHEieM BO3AyXa(h = 0,71)06yCnOBneH HeyCTOi-f'IEiBOCTblOBOCHOBaHBHB~a. 


